注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

面朝大海 春暖花开

一点心得,转载本博客文章,请注明转帖,谢谢!

 
 
 

日志

 
 
关于我

中国科学院博士 主要从事遥感机理、定量反演、数据处理以及GIS应用研究。ArcGIS、Envi 、ERDAS、Ecognition软件、IDL语言、6S、SAIL

网易考拉推荐

统计分析中的显著性问题  

2013-08-05 15:41:34|  分类: 统计 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

?

分析变量之间的关系大都采用统计分析的方法,那么当我们基于统计的方法得到一些统计值,如何利用这些统计值来进行分析呢?通常,在解释两(或多)个变量关系时必须考虑的四个基本问题:

1.???? 关系的显著性(the significance of the relationship):指两(或多)变量之间关系的统计显著水平,一般要求p < 0.05。这是解释的第一步,如果不显著(p > 0.05)、不管其相关系数(回归系数或其它描述关系强度的统计量)多强(这在小样本的情况下会发生),都没有继续讨论的意义,因为在总体中这种关系存在的可能性很低,如接受这种关系的风险太大(即Type I错误)。

2.???? 关系的强度(the strength of the relationship):指相关系数(或其它类似统计量)的大小。以相关系数为例,一般认为0.3以下为弱相关、0.3-0.7之间为中相关、0.7-1.0为强相关。这种分类也适用于其它标准化统计量(如标准回归系数, standardized regression coefficient,在SPSS中叫BETA)。大家知道,这些标准化的统计量的平方描述了两(或多)个变量之间的重合部分(如我最近详细解释的回归模型R2描述了自变量对因变量的解释部分),从那个角度来看,弱相关的变量之间的重合不到10%、中相关变量之间的重合在10-50%,强相关变量之间的重合在50%以上。

3.???? 关系的方向(the direction of the relationship):指相关系数(或其它类似统计量)的正负符号。如果原先的假设是单尾(one-tailed),如“上网会减少社交时间”、“上网会增加孤独感”等,那么其相关系数的方向就十分重要。(从可证伪性原则来看,单尾假设比双尾假设更好。)当一对变量的关系是显著并强烈、但是其方向与假设相反,该研究假设也必须被拒绝。当然研究者应该深入分析这种情况为何会发生。

4.???? 关系的形式(the form of the relationship):指变量之间的关系是线性(linear)还是非线性(nonlinear)。上述统计量描述的都是线性关系,如果不显著、显著而弱、显著并强烈但反方向,也许其真正的关系不是线性而是非线性,所以我们不能简单地收工回家,而要探索其非线性关系。当然,后者更复杂、对于没有良好的理论和方法训练的研究者更是容易掉进种种陷阱。以后有时间专门写个有关帖子。这里只想提醒大家,当你“山穷水尽疑无路”时,考虑一下非线性关系也许(just maybe)会有“柳暗花明又一村”之效。

检验回归方程是否显著,看P值;查看效应量的大小看R2(R平方)。在其他情况均相同的情况下,R2(R平方)越大,P值越小;P值越小,R2(R平方)越大。

  评论这张
 
阅读(524)| 评论(0)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017